核武器

更新时间:2024-09-14 12:42

核武器(英文:Nuclear Weapon),是利用能自持进行的原子核裂变聚变反应瞬时释放的巨大能量、产生爆炸,实施大规模杀伤破坏的武器。核武器是军事威慑力量的重要组成部分。

发展沿革

历史背景

核武器的出现,是20世纪40年代前后科学技术发展的结果。

1938年12月,德国化学家O.哈恩和F.W.斯特拉斯曼(Friedrich Wilhelm StraBmann,1902-02-22~1980-04-22)发现了铀原子核裂变现象。几个星期内,许多国家的科学家验证了这一发现,并进一步提出有可能创造这种裂变反应自持进行的条件,从而开了利用核能这一新能源的前景。

1939年8月31日,丹麦物理学家N.玻尔和他的合作者J.A.惠勒(John Archibald Wheeler,1911-07-09~2008-04-13)从理论上阐述了核裂变反应过程,并指出能引起这一反应的最好核素是铀-235。其后,科学家们又指出了这种裂变反应自持进行的条件,从而开辟了利用核能这一新能源的前景。同历史上许多科学技术新发现一样,核能的开发也被首先用于军事目的,即制造威力巨大的原子弹。

初期研发

核武器的研制首先从第二次世界大战中的军事强国启动。

从1939年起,由于法西斯德国扩大侵略战争,欧洲许多国家开展科研工作日益困难。正当核能利用有指导意义的研究成果发表时,英、法两国向德国宣战。1940年夏,德军占领法国。法国物理学家J.-F.约里奥-居里领导的一部分科学家被迫移居国外。英国曾制订计划进行这一领域的研究,但由于战争影响,人力物力短缺,后来也只能采取与美国合作的办法,派出以物理学家J.查德威克为首的科学家小组,赴美国参加由理论物理学家J.R.奥本海默领导的原子弹研制工作。

1942年以前,德国在核技术领域的水平与美、英两国大致相当,但后来受战争影响,技术上落伍了。德国原定用以重水作慢化剂的热中子反应堆生产原子弹用的钚-239,但直到1945年初,才建成一座小型的次临界反应堆装置(一种研究装置,其链式裂变反应不能自持)。为生产高浓铀,德国曾着重开展高速离心机的研制,由于技术难度高,加上受空袭和电力、物资缺乏等影响,进展缓慢;A.希特勒迫害科学家,以及有的科学家持不合作态度,是工作进展缓慢的另一原因;更主要的原因是德国法西斯头目过分自信,认为战争可以很快结束,不需要花力气去研制尚无把握的原子弹,因而最初几年一直不给予有力支持。后来想加强核技术的研究,但因战争破坏而困难重重,研制工作只能以失败告终。

从欧洲迁居美国的匈牙利物理学家L.西拉德(匈牙利语:Szilard Leo,1898-02-11~1964-05-30)首先认识到,一旦德国掌握原子弹技术,可能带来严重后果。经他和另外几位从欧洲移居美国的科学家推动,1939年8月,A.爱因斯坦写信给美国总统F.罗斯福,建议研制原子弹。美国政府接受了这一建议,开始建造石墨反应堆,拨款6000美元购买慢化剂石墨等。

1941年12月日本袭击珍珠港后,原子弹研制规模扩大。

1942年8月13日,美国建立的“曼哈顿工程区”(Manhattan Engineering District),直接动用的人力约60万人,投资20多亿美元。此前,英国也曾制订过原子弹的研究计划,由于受战争影响,在第二次世界大战期间只能与美国合作,派出以查德威克为首的科学家小组,赴美国参加由J.R.奥本海默领导的原子弹研制工作。由于美国的工业技术设施和建设未受到战争的直接破坏,又掌握了制造原子弹必需的资源,集中了一批美国国内外优秀科技人才,因而较快地实现了原子弹研制计划。经过不到3年时间,美国制成了3颗原子弹,成为世界上第一个拥有原子弹的国家。

1945年7月16日,美国进行了首次原子弹试验,并于8月6日、9日先后在日本的广岛和长崎投下了两颗原子弹。

由于苏联在1949年试验了原子弹,1950年1月美国总统杜鲁门下令加速研制氢弹。

1952年11月1日,美国进行了以液态气为热核材料的氢弹原理地面试验,但该试验装置非常笨重,不能用作武器;

1954年3月1日进行的氢弹地面爆炸试验,采用了气化理固体聚变材料,使核装置的体积、重量大幅度减小;

1956年5月21日,美国进行了氢弹空中爆炸试验。

后续发展

20世纪60年代以来,以小型化和提高综合技术性能为标志,核武器技术取得了巨大的进步,并逐步走向成熟。主要表现于5个方面:

在保持一定的威力的条件下,氢弹重量、尺寸大幅度减小。例如,1945年美国在长崎投下的原子弹,质量约4500千克,威力约2万吨TNT当量,相当于每千克4.45吨TNT当量;而美国在20世纪70年代未完成研制、80年代初部署的“和平卫士”洲际核导弹,其子弹头质量不到200千克,其威力可达50万吨TNT当量(有50万吨和30万吨TNT当量两档,部署采用了后者),相当于每千克2500吨TNT当量,同1945年的原子弹相比,单位质量的威力提高了560倍左右。与此同时,弹头的直径、长度也显著减小,进步满足了配装分导式多弹头战略导弹的需要。

20世纪70年代以后,美国、苏联两国都在该方面作出了很大努力。如美国的“和平卫士/MX”洲际弹道导弹(图3)、“三又载”Ⅱ潜基弹道导弹、B-2战略轰炸机投射的核弹和核巡航导弹;苏联的SS-24和SS-25洲际弹道导弹、SS-N型潜基弹道导弹、图-160战略轰炸机携带的核炸弹和核巡航导弹等,其生存能力和命中精度等都有了很大提高。与此同时,核国家努力提高核武器在生产、贮存、运输、投射直至核爆炸的各种环境条件下的可靠性和安全性,改进其保安性,增强防止非授权使用的能力。

研制出了以增强中子辐射为主要杀伤破坏因素的中子弹、用于导弹防御的增强X射线弹和突出冲击波杀伤破坏作用的弱剩余放射性弹。其中,中子弹的研究工作始于50年代末。1962年美国开始试验中子弹,并取得很大进展。但在要不要生产和装备中子弹问题上,美国国内争论不休,直到1977年,国会才批准生产中子弹的拔款申请。1981年美国开始生产和储备“长矛”导弹的中子弹头和203毫米榴弹炮的中子炮弹,均于1992年退役。法国和苏联也先后进行了中子弹试验。此外,对核电磁脉冲弹也进行了探索研究。

从20世纪50年代中期洲际弹道导弹问世起,美国和苏联就开始寻求能有效地防御核袭击的手段和技术。除了加固战略进攻核导弹、构筑地下掩体和民防工程等防御措施外,着重研究发展装有核战斗部的反弹道导弹导弹武器系统。60年代末,美国和苏联开始部署“以核反核”的反导弹系统,标志着导弹防御系统成为两国战略威慑力量的组成部分。1975年,美国关闭了其部署的“卫兵”核反弹道导弹系统,苏联则一直保留着核反弹道导弹系统。1983年3月,美国执行“战略防御倡议(SDI)计划”,设想以定向能武器、动能武器等几种新技术为突破口,构成多层拦截防御,使核武器成为“无效与过时”。这一庞大的计划,耗费了巨大资金,虽也取得一些成果,但由于技术十分复杂、难度很大,距原定目标仍十分遥远。随着苏联解体,两极格局基本消失美国克林顿政府于1993年5月放弃SDI计划,改为执行以陆基拦截导弹为基础的“全球防御有限打击(GPALS)计划”。1997年7月,又改变为“国家导弹防御系统(NMD)计划”。2002年美国退出《反弹道导弹条约》,并启动部署地基中段防彻系统(GMD),美国导弹防御进入全面部署、加速发展、积极构建多层防御体系阶段。美国多层导弹防御体系经过小布什政府、奥巴马政府和特朗普政府的持续推进,2019版《导弹防御评估》报告明确构建射前打击、射中拦截和射后被动防御一体化的综合防御系统,并提出“本土防御要领先流氓国家导弹威胁十年,区域防御要应对全谱战区导弹威胁”的发展目标。

2023年10月25日,俄罗斯联邦委员会(议会上院)全票通过一项法案,撤销批准《全面禁止核试验条约》。

2023年10月30日,美军日前宣布计划研发新型核弹,其威力将达到美国此前对日本广岛投放原子弹的24倍。新核弹的型号将命名为B61-13型,由之前的老型号核弹头改进而成,预计爆炸当量相当于36万吨TNT炸药,而美国1945年投至日本广岛市的原子弹当量为1.5万吨TNT。

当地时间2023年11月2日,俄罗斯总统普京签署法律,撤销对《全面禁止核试验条约》的批准。

技术特点

一般类型的化学炸药如梯恩梯(TNT)爆炸时释放的能量,来自化合物分解反应。在这些化学反应里,原子核都没有变化,只是各个原子之间的组合状态有了变化。核反应与化学反应则不一样。在核裂变核聚变反应里,参与反应的原子核都转变成其他原子核,原子也发生了变化。因此,人们习惯上称这类武器原子武器。但实质上是原子核的反应与转变,所以称核武器更为确切。

基本原理

原子弹主要利用铀-235、钚-239等重原子核链式裂变反应的核武器,称为裂变武器,通常称原子弹。原子弹炸药使处于次临界状态的裂变材料瞬间达到超临界状态,并适时由中子源提供若干中子触发链式反应产生爆炸。可以通讨“枪法”或“内法”使裂变材料达到超临界状态。用前一种方法制成的原子弹称枪法原子弹或压拢型原子弹。用后一种方法制成的原子弹称内爆法原子弹或压紧型原子弹。原子弹的核装置一般由裂变材料制成的核部件、高能炸药部件、核点火部件(中子源)和其他结构件组装而成,又称裂变装置。

氢弹是利用重原子核链式裂变反应提供的能量,使等轻原子核产生自持聚变反应,进而引发聚变-裂变反应,瞬间释放出巨大能量的核武器,称为聚变武器或热核武器,通常称氢弹。轻原子核发生自持聚变(热核)反应的先决条件是在一定的时间内,维持高温、高密度,这个条件只能由核裂变装置爆炸来创造。因此,氢弹的核装置由初级和次级组成。初级指用来为自持聚变反应创造条件的、专门设计的起爆裂变装置。次级指发生以聚变反应为主放出巨大能量的氢弹主体部分。氢弹爆炸时释放的能量,一般主要来源于次级。由于聚变材料无临界质量的限制,氢弹的核装置威力在理论上可以设计得很大。

各种类型的核武器,就其设计原理来说,都是以裂变和聚变反应为基础设计的,而目这两种核反应常被交错利用(如助爆型原子弹),以提高核材料的利用率,但其仍可大体归到裂变武器和聚变武器两类。通过调整氢弹“次级”设计,可制成特殊性能核武器,如中子弹、剩余放射性弹等,中子弹是以高能中子为主要杀伤因素,相对减弱冲击波和光辐射效应的、特殊设计的小型氢弹。

核武器爆炸时释放的能量,比只装炸药的常规武器要大得多。例如:1千克TNT炸药爆炸释放出的能量为4.19兆焦;1千克铀全部裂变释放的能量约81.9太焦,相当于近2万吨TNT炸药的爆炸威力;1千克氘化锂-6完全聚变释放的能量约为260太焦,相当于约6万吨TNT炸药的爆炸威力。核武器释放的总能量通常用爆炸释放相同能量的TNT炸药量来表示,称TNT当量。现有各种核武器的威力,小的仅有几十吨TNT当量,大的可达千万吨TNT当量。

核武类型

从不同角度出发,核武器的分类有以下几种:

1945年日本长崎投下的核武器,引起高达18千米的蘑菇云

核分裂核武透过核分裂释放能量。重核子如中子冲击下发生核分裂反应,分裂成为较轻的核子,同时释放更多的中子,造成连锁反应。传统上核分裂核武称为原子弹

大部分的核分裂核武是使用化学炸药,把在临界质量以下的-235或钚挤压成超越临界质量的一块,然后在中子照射下产生不受控的连锁反应,释放大量能量。起爆的方式可分为枪式和内爆式。美国第一枚投掷在日本广岛的核武小男孩即为枪式起爆的铀弹。第二枚投掷在长崎的胖子为内爆式起爆的钚弹。

一磅的铀-235分裂时可放出大约三千七百亿焦耳的能量,约为82太焦耳/千克(TJ/kg)。一般的连锁反应只维持一微秒(μs),功率约为82艾瓦/千克(EW/kg),或每原子200兆电子伏/秒。

两种核分裂起爆方式

核融合核武透过核聚变释放能量。轻核子如结合成较重的元素,同时释放大量的能量。使用核融合过程的武器亦常被称为氢弹,因为氢是核融合的常用材料。核融合核武有时亦称热核武器,因为它们的连锁反应需要更高的温度启动。

一般的氢弹会先引爆作为前级的核分裂弹,造成足够的温度及压力,之后的后级核融合才会开始。后级可以无限制地连锁起来,制成比普通核分裂强力很多的核武。

只有美、俄、英、中、法五国拥有使用与生产氢弹的能力。印度在1998年5月进行的核试验中试爆了带热核装置的核弹,可能拥有氢弹或已经研制成功了氢弹。

区别核武器是属于核分裂还是核融合核武,要靠分辨武器能量的主要来源。因为现代的核武通常结合两种核反应:聚变需要先以裂变产生足够的温度及压力启动;同时裂变在聚变开始后效率会得到提高。故此部分核武是三级设计:最先在外围第一级先用核裂变,造成聚变条件。中部第二级聚变发生后,再引起弹头中心的第三级的第二次裂变反应,造成裂-聚-裂反应的三级核弹,是最大破坏性的武器。此核弹称为三相弹氢铀弹、三级效应超级炸弹或肮脏的氢弹

美国三相氢弹设计,氢弹都是三相弹,因为不先有裂变的高温高压不可能产生融合。

又称助爆原子弹,虽然名为“原子弹”实和中子弹同为广义氢弹一种,指虽然像典型氢弹般有聚变材料作为核爆增强剂,但聚变的主要作用是提供足够中子,给裂变材料的分裂反应更为完全,意味所需的聚变材料较少,所以较一般氢弹小巧。通常此设计是用于小型的战略级核弹,因威力虽然逊于典型氢弹却胜在较紧凑。

核爆方式

核爆炸方式通常分为大气层核爆炸、水下核爆炸、地下核爆炸和高空核爆炸。

毁伤效应

核武器在大气层爆炸时,主要产生冲击波效应、光辐射效应、早期核辐射效应、放射性沾染效应和核电磁脉冲效应5种杀伤破坏效应。

研究试验

核装置的研制是核武器研制的关键环节。其大致过程如下,根据军事需求确定核装置研制的目标,从概念研究入手,经过关键技术和核部件的预先研究或可行性研究,形成包括威力、重量、尺寸、构形、核材料部件、核试验要求、研制工期、经费等内容的几种方案,再经过论证比较和评估,选定研制技术方案,确定战术技术指标,然后进行大量数值模拟计算、实验室实验和工艺试验,完成型号设计,再通过必需的核装置爆炸试验和各种环境模拟试验(含飞行试验)检验设计的合理性,达到设计定型和工艺定型。进行上述工作,要有专门的科技队伍及必要的设计环境、实验室和外场试验场地(包括核试验场)物理设计是核装置设计的核心,必须深入了解核装置的反应过程,弄清其必须具备的条件与各种物理参数,掌握影响反应过程各种因素的内在联系与变化规律。为此,要进行爆轰物理、动高压物理、内爆动力学、等离子体物理、辐射流体力学、原子核物理、中子物理、计算数学和材料科学等一系列科学技术问题的研究,而核装置的研制实践反过来又会带动和促进这些学科的发展。

在核装置研制的整个过程中,有3个环节起着重要作用。

核试验所起的作用并不限于此。对核武器效能的认识与掌握,有赖于对核爆炸能量释放和辐射传播过程及其与周围介质环境相互作用的深入了解。通过核试验的实践,取得核武器杀伤破坏效应可靠参数和规律性知识也是十分必要的。此外,为检验库存核武器的安全性和可靠性,还需要定期抽样进行核试验。地下封闭式核爆炸试验基本上可以避免放射性物质泄入大气造成环境污染,还可以通过放射化学和靠近核装置的近区物理诊断,更好地测定各种物理过程和反应阶段的特征参数,以验证和改进核武器设计。因此核试验由大气层转入地下就成了必然趋势。

制造过程

世界各国研制核武器在技术上首先要过四关:核燃料、起爆装置、核试验、投掷技术。

想研制核武器的国家把目光都盯向了核电站的核反应堆废料。为了绝对安全起见,国际社会已把防扩散作为核反应堆改进的一个方向,严禁扩散3项敏感技术,它们是:铀的同位素分离技术(又叫铀浓缩技术)、乏燃料的后处理技术(可从核废料中提取钚239的技术)和重水生产技术(可以用来生产氢弹的原料——氘和氚)。

制造一枚原子弹不仅需要有用作裂变燃料的原材料,更要有触发装置,以及一种能在核弹发生爆炸前使大部分燃料发生裂变的技术(否则核弹会失败)。起爆装置关最大技术难题是高爆炸药的合理配置。起爆时,在百万分之一秒的时间内同时引爆快速燃烧和慢速燃烧的两种常规炸药,才能实现真正的核爆炸。如果定时误差超过上述要求,或者两种炸药配比不对,就会大幅度降低常规爆炸所产生的压缩效果,致使核爆炸威力减半,甚至形不成核爆炸。一些暗中研制原子弹的国家,就是在这一关面前一筹莫展。

1996年9月10日,联合国第50届大会全体会议以压倒多数通过《全面禁止核试验条约》后,用计算机模拟取代传统核爆试验可以达到同等试验效果的介绍就层出不穷。可这种在已有核爆炸试验的基础上将各种参数编程输入超大型计算机,用化学爆炸、实验室、计算机对核爆炸物理过程和核爆炸效应进行模拟的方法,对那些急于造出核武器的国家无疑是一个比造一颗原子弹更难达到的目标,而且核武器威力的大小很难用计算机进行模拟,毕竟自然条件的复杂性导致其在计算机中难以全部复制。自1945年7月16日美国首次核试验到1996年9月《全面禁止核试验条约》通过为止,全世界共进行了2047次核试验。其中美国1031次,前苏联715次,法国210次,英国45次,中国45次,印度1974年进行了一次。由此可见,真正完成完整的核武器物理设计,没有强大丰富的试验数据库的支持是难以想象的。

真正的核武器由三部分组成,即核战斗部、运载工具和指挥控制系统。有了核武器就必须拥有相应的投掷手段。核爆成功后,接下来的小型化和武器化的问题仍然是绕不过去的一关。核武器搭载试验同样必不可少。一般来讲,战略原子弹主要装在导弹、航空炸弹上,发射平台包括各种射程的弹道导弹巡航导弹核潜艇、战略轰炸机等。不过,随着弹道导弹拦截系统的飞速发展,弱国凭借自己那有限的运载手段,究竟还有多少机会把得之不易的原子弹扔到对手的头上,实在是大有疑问。扔不出去的原子弹其实际意义上的威慑能力必定大打折扣。

各类核弹

原子弹是以重核铀或钚裂变的核弹。原子弹的原理是核裂变链式反应——由中子轰击铀-235或钚-239,使其原子核裂开产生能量,包括冲击波、瞬间核辐射、电磁脉冲干扰、核污染光辐射等杀伤作用。

(一般指二相弹):氢弹是核裂变加核聚变——由原子弹引爆氢弹,原子弹放出来的高能中子与氘化锂反应生成氚,氚和氘聚合产生能量。氢弹爆炸实际上是两次核反应(重核裂变和轻核聚变),两颗核弹爆炸(原子弹和氢弹),所以说氢弹的威力比原子弹要更加强大。如装载同样多的核燃料,氢弹的威力是原子弹的4倍以上。当然,不能用大当量的原子弹与小当量的氢弹来比较。一般原子弹当量相当于几千到几万吨TNT,二相弹可能达到几千万吨TNT当量。

聚变核武器是使氢的同位素氘或氚化锂这类热核燃料中产生起爆条件,用裂变核弹的方法使核武器中的热核燃料具有10000000—20000000℃高温,从而引起核聚变。原子弹和氢弹通常以千吨或兆吨梯恩梯(TNT)当量作为单位来表示。如1945年美国投在广岛的裂变核弹,不到50千克的铀释放出来的能量相当于2万吨化学炸药。各种聚变核弹即热核弹(氢弹),其威力最高可达60兆吨。据计算,在核武器爆炸时,1千克铀—235全部裂变释放的能量相当于2万吨TNT释放的能量,而1千克氘和氚的混合物完全聚变时放出的能量大约是1千克铀—235完全裂变所放出能量的3—4倍。

世界上最大的一次核爆炸是苏联于1961年10月30日在新地岛进行的热核氢弹爆炸,当量5000万吨(原定10000万吨),爆炸威力的半径700千米,总覆盖面积为8.26万平方千米。核爆炸后,4000千米内的飞机、导弹、雷达、通讯等设备全部受到不同程度的影响。由于太恐怖,对环境破坏太严重,威力过度没有意义,以后再未如此疯狂试验。

氢铀弹(三相弹)经过核裂变—核聚变—核裂变三次核反应,它是在氢弹的外层又加一层可裂变的铀-238,破坏力和杀伤力更大,污染也更加严重,即为“脏弹”。也属于第二代核武器。

迄今为止,全世界只有两种氢弹构型,美国的T-U构型和中国的于敏构型

中子弹(增强辐射弹):以氘和氚聚变原理制作,以高能中子为主要杀伤力的核弹。中子弹是一种特殊类型的小型氢弹,是核裂变加核聚变——但不是用原子弹引爆,而是用内部的中子源轰击钚-239产生裂变,裂变产生的高能中子和高温促使氘氚混合物聚变。它的特点是:中子能量高、数量多、当量小。如果当量大,就类似氢弹了,冲击波和辐射也会剧增,就失去了“只杀伤人员而不摧毁装备、建筑,不造成大面积污染的目的”。也失去了小巧玲珑的特点。中子弹最适合杀灭坦克、碉堡、地下指挥部里的有生力量

中子弹是小型的热核武器。武器内的X射线反射镜及弹壳以制成,让核融合中产生的中子离开弹体。高能量的中子流比其他放射更具穿透能力。一般能阻隔伽傌射线的物料通常不足以抵挡中子流。因为只有水和电解质才能吸收中子,而生物中含大量水分,所以中子流对生物产生的伤害比伽傌射线更大。原先制造中子弹的目的,是希望可以杀人而不毁物(被戏称为“业主炸弹”或“房贷积欠款炸弹”:能杀死屋内的人,但房子无损)。中子弹所产生的热能及冲击波被故意减低,而中子流则被加强。但事实上中子弹的热及火仍然会对建筑物造成严重的损毁。所谓“杀人不毁物”只是相对其他热核武器。中子弹所加强的放射,只限于引爆的一刻,与感生放射核弹的长期放射有所不同。

中子弹爆炸时释放大量的高能中子,靠中子辐射起杀伤作用,穿透力较强,冲击波、热辐射和放射性沾染较其他核武器为小。中子弹在有效范围内能杀伤一般坦克内或建筑物内的人员。可作战术核武器使用。

肮脏弹是作为一个术语代指具有放射性、非核武器的武器。它装填着放射性材料,爆炸的时候将放射性物质抛射散布,造成相当于核放射性尘埃的污染,造成灾难性的生态破坏。自“9·11”事件之后,西方政府最主要担心的一个就是恐怖分子可能利用肮脏弹袭击人口稠密区,作为区域封锁武器,就像其他更高级的更复杂的放射性武器,可以将这个地区在以后的数年或十几年中,退化为不适合人类居住的放射性地区。然而大多数的分析人士认为,肮脏弹的作用更主要体现于心理方面,而它所造成的污染可以用昂贵但是有效的净化措施来治理。

钴核弹的原理是在弹壳使用元素。核融合释放的中子会令钴变成钴-60,一种会在长期(约五年内)释放强烈伽傌射线的同位素,目的是维持长时期的强放射污染。除了使用钴外,亦可使用造成维持数天污染,或用造成维持数月的污染。不过由于三级的裂-聚-裂核武亦能部分达成同一目的,故此已知的核武国没有承认有生产钴核弹。

冲击波弹是一种小型氢弹,采用了慢化吸收中子技术,减少中子活化,削弱其爆炸后辐射的作用,部队可以迅速进入爆炸区投入战斗,是一种战术核弹。

射线弹原理类似一座无防护层的裂变反应堆,所以不会发生一般意义上的爆炸,只放出大量伽马射线;尽管各种效应不大,也不会使人立刻死去,虽然能造成持久的放射线,但不一定会污染土地,能有效迫使敌人离开。

核电磁弹(Electromagnetic Pulse,缩写:EMP)是经过改造的核弹,减弱了冲击波与核辐射效应,增强了电磁脉冲效应(利用康普顿散射光电效应等原理),利用在大气层以上的核爆炸,产生大量定向或不定向的强电磁脉冲,基本上对人体无害,但可使电器(或金属)急速升温烧毁。

贫铀弹又称衰变铀弹或者是耗弱铀弹,是指弹体使用以核能发电所产生出的核废料贫化铀为主原料的合金所制作出的弹头。由于在实战、演习、射击训练时,贫化铀粉末会扩散到自然环境中,而贫化铀是具有化学毒性的重金属,同时也是放射性物质,所以使用贫化铀弹的正当性也引起争议。包括中国等多个国家均研制装备有该种弹,全世界只有美国在战争中使用过贫铀弹

核爆威力

核武器是指包括氢弹原子弹中子弹三相弹等在内的与核反应有关的巨大杀伤性武器。

核武器爆炸时释放的能量,比只装化学炸药的常规武器要大得多。例如,1千克铀全部裂变释放的能量约8×10^13焦耳,比1千克TNT炸药爆炸释放的能量4.19×10^6焦耳约大2000万倍。因此,核武器爆炸释放的总能量,即其威力的大小,常用释放相同能量的TNT炸药量来表示,称为TNT当量。美、俄等国装备的各种核武器的TNT当量,小的仅1000吨,甚至更低,已有微型核武器,爆炸当量在几十吨;大的达1000万吨,前苏联曾试爆过5000万吨当量的氢弹(沙皇核弹)。

核武器爆炸,不仅释放的能量巨大,而且核反应过程非常迅速,微秒级的时间内即可完成。因此,在核武器爆炸周围不大的范围内形成极高的温度,加热并压缩周围空气使之急速膨胀,产生高压冲击波。地面和空中核爆炸,还会在周围空气中形成火球,发出很强的光辐射。核反应还产生各种射线放射性物质碎片;向外辐射的强脉冲射线与周围物质相互作用,造成电流的增长和消失过程,其结果又产生电磁脉冲。这些不同于化学炸药爆炸的特征,使核武器具备特有的强冲击波、光辐射早期核辐射放射性沾染核电磁脉冲等杀伤破坏作用。核武器的出现,对现代战争的战略战术产生了重大影响。

有效杀伤距离R=C×爆炸当量^(1/3)〔C为比例常数,^(1/3)求立方根〕;一般取比例常数C=1.493885;有效杀伤面积=πR2

核武国家

情况综述

拥有核武器的国家有:美国俄罗斯英国法国中国印度巴基斯坦以色列朝鲜。除美国俄罗斯英国法国中国已掌握核武器外,印度在1974年进行过一次核试验。巴基斯坦也在1998年05月29日首次核试验成功。以色列日本虽未公开进行核爆试验,但以色列是公认的拥有核武器的国家,日本被认为是准核国家。朝鲜进行过三次核试验,并且正在向着核武器更小型化方向发展,以便未来能够实现实战能力。

除此之外,以色列也被国际社会确认拥有核武,哈萨克斯坦作为苏联解体后第三大核武器拥有国,因原苏联时期核试验多在哈萨克进行,却没有控制、测试和再生产的体系,独立主动放弃核武器,并关闭苏军建立的数千座核试验设施,另外乌克兰南非因和平原因放弃其核武,属于曾经拥有核武的国家,而关于日本,大多数国家都认为日本是准核国家,因为日本拥有大量核电站并且拥有大量的铀,而日本已经完全掌握了核武器技术至于制造核武器只是一个时间问题。

被称为“巴基斯坦核弹之父”的阿卜杜勒·卡迪尔·汗已经对外承认了自己向朝鲜利比亚伊朗三个被美国称为“流氓政权”的国家出售核武关键技术,其中朝鲜核试验成功,利比亚卡扎菲迫于美军压力已宣布放弃核武计划,伊朗革命卫队称在俄朝提供核弹头所需钚的协助下核武研发成功。

拥核条件

一般认为,掌握必要的核技术并具有一定工业基础及经济实力的国家,也完全有可能制造核武器。核武器的载具以陆基海基空基三种区别,称为核三位一体

自从有了核武器以来,人类战争就进入了一个新的,以核武器为基础的时代。核武器拥有强大威慑力,能够赋予核国家巨大的战争潜力和显赫的国际地位。中国、美国、苏联/俄罗斯、英国、法国五国同时也是联合国安理会常任理事国,是世界上公认的核武器大国。

美国